

Emerging Techniques: Focused Ultrasound

Mario L. Fabiilli, Ph.D.

Associate Professor Department of Radiology Department of Biomedical Engineering University of Michigan, Ann Arbor, MI, USA

Alliance for Advanced Therapies in Orthopaedics 20 May 2023

Disclosures

Funding

NIH (R01HL139656, R21AR065010, R21AR072336)

Focused Ultrasound Foundation

UM Biosciences Initiative

Patents

US-10,322,184; US-10,335,368; US-10,709,812

National Institute of Arthritis and Musculoskeletal and Skin Diseases

National Heart, Lung, and Blood Institute

Focused ultrasound is a rapidly growing technology that is revolutionizing medical therapies

The benefits of FUS

- Non-ionizing
- Non-invasive
- Spatiotemporally controlled
- Translational

FUS, alone or in combination with administered agents, can provide therapeutic benefits in many applications

Focused Ultrasound Foundation

Outline

- Basics of FUS
- Applications of FUS in orthopedics and regenerative medicine
 - Clinical
 - Pre-clinical

Outline

Basics of FUS

• Applications of FUS in orthopedics and regenerative medicine

- Clinical
- Pre-clinical

The Physics of (Ultra)sound

Sound is a type of mechanical wave

- Oscillation in pressure, stress, particle displacement, particle velocity, etc., propagated in a medium with internal forces (e.g., elastic or viscous), or the superposition of such propagated oscillation (ANSI/ASA S1.1-2013)
- Unlike light, sound does NOT propagate through a vacuum

The Range of Sound Frequencies

Ultrasound propagation is dependent on material properties

Attenuation

	Attenuation (dB/cm/MHz)
Water	0.02
0.5% (w/v) fibrin	0.03
1.0% (w/v) fibrin	0.04
2.0% (w/v) fibrin	0.07
Soft tissue (average)	0.54
Muscle	1.09
Bone, cortical	6.90
Bone, trabecular	9.94

 $Z = \rho c$ Z = acoustic impedance $\rho = material density$ C = material sound speed $\alpha = \alpha_{S} + \Delta \alpha_{V} + \alpha_{V}$ $\alpha = \text{acoustic attenuation}$ $\alpha_{S} = \text{scattering term}$ $\alpha_{V} = \text{absorption term}$

Diagnostic vs Therapeutic Ultrasound

Diagnostic ultrasound

- "Look" only
- Primary goal: NOT generate bioeffects

Therapeutic ultrasound

- Primary goal: generate bioeffects
- Bioeffects can be mechanical and/or thermal

Ultrasound-induced phenomena can generate multiple bioeffects

Radiation Force

Nowicki et al. Eur J Ultrasound 1998

Acoustic Streaming

Duan et al. Theranostics 2020

Surface Waves

Naseer et al. Biofabrication 2017

Heating

Acoustic Droplet Vaporization

Sheeram (unpublished)

Cavitation

Izadifar et al. J Med Biol Eng 2019

Exogenous agents

Kripfgans et al. J Acoust Soc Am 2014

Outline

- Basics of FUS
- Applications of FUS in orthopedics and regenerative medicine
 - Clinical
 - Pre-clinical

Low intensity pulsed ultrasound (LIPUS) has been clinically used in bone repair

- Uses diagnostic level intensities
- Stimulates mechanotransductive pathways (e.g., MAPK, integrins, etc.)
- Received US FDA approval in 1994 for radius and tibial fractures; in 2000, nonunions (not skull/vertebrae)
- Clinical benefits are "muddied"

Parameters 1.5 MHz, 1 kHz PRF, 20% DC 30 mW/cm² 20 min per day

Escoffre and Boukaz (eds.) Therapeutic Ultrasound 2016

Outline

- Basics of FUS
- Applications of FUS in orthopedics and regenerative medicine
 - Clinical
 - Pre-clinical

FUS enhances targeting of exogenous MSCs to skeletal muscle

Problem: Poor localization of MSCs after IV injection

Approach: Use FUS to transiently increase levels of chemoattractants in target tissue

Sonoporation increases BMP2 plasmid uptake and bone formation

Problem: Safe and effective delivery of BMP2 is challenging

Approach: Use FUS and microbubbles to locally enhance BMP2 plasmid delivery

Sonoporation of endogenous MSCs improves fracture healing and ligament reconstruction

FUS enables on-demand control of drug release from hydrogels

<u>Problem</u>: The ability to spatiotemporally control drug release from hydrogels is very limited <u>Approach</u>: Develop drug-loaded hydrogels that can be modulated using FUS

FUS-mediated growth factor release from a composite hydrogel stimulates angiogenesis

Sequential payload release using composite hydrogels and FUS

FUS-generated hyperthermia enables spatiotemporally controlled transgene expression

<u>Problem</u>: The ability to spatiotemporally control drug release from hydrogels is very limited <u>Approach</u>: Use FUS to thermally activate cells containing a heat responsive gene switch

Conclusions

- FUS is revolutionizing medical therapies and is well-positioned to impact orthopedics and tissue regeneration
- FUS-generated bioeffects enable noninvasive, spatiotemporally controlled modulation of in situ biology
- FUS enables highly personalized therapies that can ultimately benefit patients

Acknowledgements

Fabiilli Lab

- Christian Aguilar
- Mitra Aliabouzar PhD
- Keith Arlotta
- Natalie Chan
- Anjali Chiravuri
- Devon Delahoussaye
- Easton Farrell
- Jonah Harmon MSE
- Alexander Hostetler
- Aniket Jivani MSE
- Benjamin Juliar MSE

- Adam Ley MSE
- Melissa Lin
- Xiaofang Lu
- Somnath Maji PhD
- Sabine Meurs
- Alexander Moncion PhD
- Sam Natla MSE
- Carole Quesada
- Samantha Staudinger

Thank you!

Mario L. Fabiilli, Ph.D.

Associate Professor Department of Radiology Department of Biomedical Engineering University of Michigan, Ann Arbor, MI, USA

mfabiill@umich.edu